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Abstract Carbon and nitrogen stable isotope ratios
were measured in hair samples from two species of
Galago from Gedi Ruins National Monument in eastern
Kenya and from Lepilemur leucopus from Beza Ma-
hafaly Special Reserve in southern Madagascar. Forest
structure was generally similar in the two areas but av-
erage rainfall was lower in Madagascar. Species average
d13C values varied with feeding height in the forest
canopy and with average rainfall level as expected from
reported variation in plant d13C values. G. garnettii,
which feeds higher in the forest canopy, had less negative
d13C values than G. zanzibaricus, which spends more
time below 5 m. L. leucopus, from a drought-a�icted
forest, had less negative hair d13C values than the two
galago species. The values within the Lepilemur sample
showed a positive linear relation with percent depen-
dence on a CAM tree species and with xeric conditions
within the species reserve. Nitrogen stable isotope ratios
varied with trophic level of feeding and with time spent
feeding on leguminous plants. The insectivorous galagos
had signi®cantly more positive d15N values than the
folivorous L. leucopus. Within the Lepilemur sample,
d15N values varied inversely with the percent of feeding
time spent on leguminous plants. The range of d15N and
d13C values in each of the prosimian species is larger
than reported for animals fed monotonous diets and for
New World monkey species. The monkey species feed as
groups of individuals whereas the prosimians have sol-
itary feeding habits. The ranges in the prosimian species

apparently re¯ect the greater variation in diet among
individual prosimians compared to individual monkeys.
The isotope data reported here are equivalent, on aver-
age, to those reported for other arboreal species from
similar forest habitats and with similar dietary habits.
This supports the use of such data for paleoecological
reconstruction of forest and woodland systems and diet
reconstruction of extinct primate populations and
species.

Key words Primates á Feeding ecology á Stable isotope
ratios

Introduction

Ecological data on primate species permit the testing of
general evolutionary models for extinct and extant spe-
cies (Fleagle 1988) and the identi®cation of aspects of
human behavior that most endanger or protect extant
species (Pulliam and Babbitt 1997). Arboreal primates
can be di�cult to study when they are nocturnal or
inhabit dense forests, so we tested the e�ectiveness of
animal d13C and d15N values1 as indirect monitors of
habitat use and diet. Additionally, we assessed the gen-
erality of previous results showing that animal d13C
values were correlated with the level of forest cover and
d15N values were correlated with feeding on leguminous
plants (Schoeninger et al. 1997). The former has potential
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for paleoecological reconstructions (e.g., Schoeninger
1995) and the latter for assessing primate diet choice
(e.g., Ganzhorn 1988; Oftedal 1991).

Natural abundance stable isotope ratios in plant and
animal tissues are being used with increasing frequency
to investigate various aspects of plant and animal ecol-
ogy (Schwarcz and Schoeninger 1991; Association of
Applied Biologists 1994; Koch et al. 1994; Lajtha and
Michener 1994; Pate 1994) but with little application to
non-human primates. We maintain that primates are
ideal subjects for the method because their behavioral
ecology varies widely. Some species forage in groups
while others are solitary and can be expected to di�er
individually in diet items selected. Species vary in the
height within single forest canopies that they occupy and
in the types of forest utilized, and can be expected to
re¯ect established variations in plant d values. In addi-
tion, across species there is a wide range of diet types
from pure herbivory through omnivory to insectivory
which can be traced isotopically.

To this end, we analyzed hair in three species of ar-
boreal, forest-dwelling prosimians living in Kenya and
Madagascar which have been subjects of multi-season
behavioral studies (Harcourt and Nash 1986; Nash
1994, 1997). The level of canopy cover in the forests was
similar to that in two of three regions of central America
and South America where hair d13C values in four
monkey species correlated with the density of canopy
cover (Schoeninger et al. 1997). Prosimians have been
separated, phylogenetically, from New World monkeys
since the late Eocene or early Oligocene epoch (Simons
1995) and, as such, serve as a taxonomic check on the
general nature of the stable isotope approach to studies
in primate ecology. The present study focussed on two
galago species, Galago garnettii �� Otolemur garnettii�
and G. zanzibaricus �� Galagoides zanzibaricus� that live
sympatrically at Gedi Ruins National Monument in
Kenya and Lepilemur leucopus from Beza Mahafaly
Special Reserve in southern Madagascar. The two areas,
characterized as lowland, dry forests, are similar to each
other in terms of overall tree height, the layers within the
canopy, and the height and thickness of the under-
growth. The Kenyan forest is multistratal with a canopy
at 15±20 m, emergents to 25 m, and a thick understory
(Harcourt and Nash 1986); these variables were not
quanti®ed at the Madagascar forest (Nash 1994), al-
though canopy use was recorded for all three species
(Harcourt and Nash 1986; Nash 1997). Annual precip-
itation in the Kenyan forest is around 1,000 mm (Har-
court and Nash 1986) and around 750 mm in the
Madagascar reserve (Nash 1994). Although they vary in
average body size (Harcourt and Nash 1986; Nash
1994), all three prosimian species are less than 1.0 kg.
Such average body sizes normally correlate with insec-
tivorous frugivory across primate species (Kay 1975,
1984; Kay and Hylander 1978) but Lepilemur is a
complete folivore (perhaps coprophagous: Hladik and
Charles-Dominique 1974; perhaps not: Russell 1977;
L.T. Nash, personal observation).

Materials and methods

Stable isotopes and prosimians

Patterned distributions of carbon and nitrogen stable isotope ratios
occurring in the biosphere serve as the basis for the stable isotope
approach to ecological questions. Across all plants, there is a non-
overlapping distribution of d13C values between plants that utilize
the C4 photosynthetic pathway (largely tropical grasses) and other
plants such as trees and herbs, the majority of which follow the C3

pathway (O'Leary 1981, 1988). Herbivore values re¯ect aspects of
their ecosystem because their tissues average the variation in d13C
values of plants selected as diet items (DeNiro and Epstein 1978;
Bada et al. 1990). The method has commonly been applied to
questions involving the feeding on C3 versus C4 plants. d

13C values
faithfully represent the relative amounts of browse versus grass in
diet and are useful for animal species where observational data are
ambiguous or scanty (Tieszen et al. 1979). As such, the values in
human bone collagen track the spread of maize (a C4 plant) agri-
culture in the prehistoric New World (Vogel and van der Merwe
1977; Schoeninger and Moore 1992). Similarly, the d13C values in
tooth enamel of extinct grazing animals monitor the presence of C4

grasslands during the Tertiary (Cerling et al. 1993; Kingston et al.
1994; Morgan et al. 1994).

Primates, in general, show little use of C4 plants (Milton 1987)
and the Kenyan and Madagascar forests are comprised mainly of
C3 plants with additional species that utilize the third photosyn-
thetic pathway (i.e., crassulacean acid metabolism or CAM; Kluge
and Ting 1978; O'Leary 1981, 1988). Even so, the d13C and d15N
values in the prosimians should monitor various ecological vari-
ables. G. zanzibaricus feeds lower in the canopy and should have
more negative d13C values, on average, than G. garnettii, as plant
leaf d13C values vary with canopy height (Vogel 1978b; van der
Merwe and Medina 1989; Broadmeadow et al. 1992; Garten and
Taylor 1992), and terrestrial animals have more negative bone
collagen d13C values than arboreal ones (van der Merwe and Me-
dina 1991; Ambrose and DeNiro 1986). Lepilemur was expected to
show less negative d13C values than the galagos because the Beza
Mahafaly Special Reserve in southern Madagascar had undergone
a severe drought for the 2 years prior to hair collection. The d13C
values in C3 and CAM plants, in contrast to C4 plants (Marino and
McElroy 1991), become less negative under drought conditions
(O'Leary 1981; Ting and Gibbs 1982; Garten and Taylor 1992). In
terms of animal d15N values, individual Lepilemur vary in the
amount of time spent feeding on leguminous plants (Nash 1997).
Those individuals which spend more time should have lower d15N
values than those which spend less time, because leguminous
plants, in general, are less positive than non-legumes (Virginia and
Delwiche 1982; Shearer et al. 1983; Shearer and Kohl 1986). This
pattern identi®ed prehistoric domesticated beans in South America
(Hastorf and DeNiro 1985), and the people feeding on them in
central America (DeNiro and Epstein 1981). The two galago spe-
cies are omnivorous (Harcourt and Nash 1986) and should have
more positive d15N values than Lepilemur which is herbivorous
(Nash 1994) re¯ecting the stepwise increase in d15N from producers
to top consumers (Minagawa and Wada 1984; Schoeninger and
DeNiro 1984). This ``trophic level e�ect'' has identi®ed feeding
relationships within single ecosystems (Wada and Minagawa 1983;
Peterson and Fry 1987; Hobson et al. 1997) and, possibly, trophic
position in less controlled situations (Schoeninger 1985, 1995;
Bocherens et al. 1994). Starvation increases endogenous nitrogen
turnover (Swick and Benevenga 1977) resulting in 15N enrichment
in tissues with rapid turnover (e.g., muscle and bone collagen in
growing animals: Hobson et al. 1993), but none of the prosimians
showed signs of food stress and this was not expected to be a factor.
The e�ect of the drought on Lepilemur d15N values could not be
predicted, as elevated animal d15N values correlate with water
conservation mechanisms in some (Schoeninger and DeNiro 1984;
Ambrose and DeNiro 1986; Heaton et al. 1986) but not all (Am-
brose and DeNiro 1986; Sealy et al. 1987; Vogel et al. 1990) situ-
ations subject to drought conditions (Cormie and Schwarcz 1996).
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Field studies

All behavioral data come from focal individual follows of radio-
tracked subjects. At Gedi, focal follow data comprised 130 h on
G. garnettii (two males, three females) and 178 h on G. zanzibaricus
(®ve males, four females). About two-thirds of the follows at Gedi
were done between dusk and 0100 hours and the remainder be-
tween 0100 and dawn. Approximately 250 h of focal follows were
conducted at Beza on Lepilemur (equally divided across four males
and one female). All follows at Beza were done between dusk and
2400 hours. During focal follows, scan samples of behavior were
taken at 5-min intervals recording the individual's substrate, ac-
tivity and food (when eating). Percent of time at di�erent heights of
substrate comes from these scan samples. Due to di�culties in
observing galago feeding, most of the information on diet for the
galagos comes from analysis of feces from followed subjects and
other animals (Harcourt and Nash 1986). The information on diet
in Lepilemur comes from scans which showed that all feeding was
on leaves, stems, or ¯owers. Also, of 69 Lepilemur fecal pellets
examined from followed subjects and other animals, seeds were
found in only one pellet. In addition, during focal Lepilemur fol-
lows, throughout each 5-min interval, we noted whether or not
particular foods were eaten during that interval (1/0 sampling;
Martin and Bateson 1993). The information on diet elements is the
percent of all 1/0 intervals when any feeding was seen devoted
to Euphorbia tirucalli (Euphorbiaceae) or to Tamarindus indica
(Leguminosae). Additional details on methods can be found in
Harcourt and Nash (1986) and Nash (1997).

Several animals of each species were trapped for marking and to
attach radio-transmitters for tracking. Trapping and handling of
the galagos was accomplished in 1988±1989, following methods
described for the genus (Charles-Dominique and Bearder 1979).
The animals were sedated with ketamine for handling. Most of the
Lepilemur subjects were captured by blowgun darts using Telozol
(A.H. Robbins, Richmond Va) following published methods (Le-
mos De Sa and Glander 1993). After darting, animals were caught
in a canvas sling as they fell. A few animals were pulled by (gloved)
hand from their sleeping holes and then sedated with Telozol for
handling. In both studies, animals were released at their trap sites
within 4±6 h of capture and there were no fatalities due to trapping
procedures. The work on Lepilemur was done under a protocol
approved by the Institutional Animal Care and Use Committee at
Arizona State University. The work on the galagos predated such a
requirement, but followed methods that would currently be
approved.

Hair analysis

Hair was cut from the back or tail as close to the skin as possible
with a pair of ®ne-tipped surgical scissors. Among the galagos,
some of the hair was clipped from the tail as a method of identi-
fying individuals. Hair d13C and d15N re¯ect the values in the an-

imal's diet (Minson et al. 1975; DeNiro and Epstein 1978, 1981;
Vogel 1978a; Jones et al. 1981; Nakamura et al. 1982; Tieszen et al.
1983; White 1993) and the collection of hair is less invasive than for
other tissues commonly analyzed (e.g., bone collagen). Hair does
not resorb or turn over, thus a speci®c period of feeding is moni-
tored by each segment of hair analyzed. Among the few species
studied, monkeys lose hair in molts (Inagaki and Nigi 1988; Dietz
et al. 1995; Isbell 1995) which occur relatively rapidly (4±6 weeks
once during the year). Thus, hair d13C and d15N values probably
correspond to diets taken during a limited portion of the year. Hair
growth patterns are less well-known in prosimians. Lemur catta,
the ringtailed lemur, reportedly shows reduced hair growth during
the dry season which is a period of reduced energy expenditure and
intake (Pereira 1993). Such a pattern of hair growth should result in
hair d values that are weighted toward wet-season diet values.
Neither Lepilemur nor G. garnettii showed any signs of molt.
G. zanzibaricus did in some, but not all, individuals. No obvious
pattern of seasonality was seen in the molt (L.T. Nash, personal
observation).

We analyzed hair from nine individuals from each species. In-
dividual hair samples were cleaned sequentially with water and with
acetone and dried at 90°C. Approximately 3 mg was weighed into
quartz tubes with excess cupric oxide, copper, and silver. The tubes
were sealed under vacuum and the samples combusted at 900°C in
a mu�e furnace for 2 h. Tubes were allowed to come to room
temperature. Carbon dioxide and nitrogen gas were puri®ed
sequentially, collected cryogenically on a glass vacuum line, and
analyzed on a Finnegan MAT 251. A glycine laboratory standard
analyzed repetitively produced a standard deviation of 0.2& in
d13C and 0.3& in d15N. Intra-animal variation, determined from
several separate samples of hair that were cleaned and prepared
from the same animal, showed d13C values within 0.2& of each
other in eight sets of repetitive samples and d15N values within
0.6& of each other in six sets of repetitive samples. This replica-
bility is the same as that reported in previous studies (Schoeninger
et al. 1997).

Results

No signi®cant di�erences in either d13C or in d15N values
were found between the sexes and the data were pooled.

Carbon

The galagos were 1.8& more negative in d13C values
(Table 1, Fig. 1), on average, than Lepilemur (signi®cant
at the 0.001 level of probability; 25 df ) even though all
three species feed arboreally and most tree species follow
the C3 photosynthetic pathway (O'Leary 1988). The

Table 1 Diet and stable isotope ratios (weight and feeding time values are from Harcourt and Nash 1986, for Galago; from Nash 1994,
1997, for Lepilemur)

Weight
(kg)

Time feeding d15N (AIR) (&) d13C (PDB) (&)

n x SD Range x SD Range

Galago 0.14 30% fruit 9 7.4 1.2 6.4, 9.4 )23.3 0.2 )23.6, )23.0
zanzibaricus 70% animal prey

0% leaves
Galago 0.84 50% fruit 9 7.1 0.9 5.6, 9.0 )22.8 0.2 )23.1, )22.5
garnettii 50% animal prey

0% leaves
Lepilemur 0.6 0% fruit 9 5.5 1.0 4.2, 7.3 )21.3 0.8 )22.4, )20.1
leucopus 0% animal prey

100% leaves
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galagos are insectivore-frugivores but insectivory ap-
pears unlikely to account for the di�erence between the
genera. Although insects contain signi®cant quantities of
lipids, and lipids are depleted in 13C relative to carbo-
hydrates and proteins (DeNiro and Epstein 1977), con-
trolled feeding experiments show no evidence for
incorporation of dietary lipid carbon into an animal's
proteinaceous tissues (Ambrose and Norr 1993; Tieszen
and Fagre 1993). Rather, it appears that a drought e�ect
on CAM and C3 plants in the Malagasy forest accounts
for the di�erence between Galago and Lepilemur even
though the forest is super®cially quite similar to that in
Kenya. Several Lepilemur individuals were observed
feeding on the leaves and branches of E. tirucalli, a tall,
spindly, succulent tree in both the hot/wet season and
the cool/dry season (Nash 1997). Various studies indi-
cate that E. tirucalli is a CAM species. Leaf d13C values
are less negative than those of C3 plants (Bender 1971),
the Kranz anatomy diagnostic of C4 plants is lacking
(Webster et al. 1975) and Old World succulent species of
Euphorbia usually have CAM (Kluge and Ting 1978).
CAM plant d13C values are determined by the amount
of day versus night CO2 ®xation (O'Leary 1981; Ting
and Gibbs 1982) which, in turn, is determined by water
availability (Kluge and Ting 1978; Ting and Gibbs
1982). Some succulents switch to CAM from C3 when
water-stressed and revert back to C3 when conditions
improve (Ting and Rayder 1982). Of four Lepilemur
individuals for which we have focal data (see Fig. 2), the
two that spent time feeding on E. tirucalli have the least
negative hair d13C values in the total Lepilemur sample.
Further, the two individual Lepilemur which spent no
time feeding on Euphorbia have the most negative values
in the sample. While these values approach the least

negative of the galago hair d13C values they do not
overlap them. Within the Lepilemur sample there is a
tendency for individual d13C values to correlate with a
reported vegetation gradient of more mesic to more xeric
moving away from a seasonally ¯owing river (Sussman
1991; Sussman and Rakotozafy 1994). If we eliminate
two individuals whose habitats are severely degraded
and include a Euphorbia stand, individual d13C values
approach a signi®cant correlation with the distance of
the individual's home range from the seasonal river
which forms the eastern border of the roughly rectan-
gular reserve (Spearman's R � 0:716; n � 7, critical
value for P < 0:05 is R � 0:714). Leaf d13C values in C3

plants are less negative under drought conditions, an
e�ect exaggerated in xeric areas compared to mesic areas
(see Table 2; Garten and Taylor 1992) and there is a clear
trend for Lepilemur individuals from more xeric ranges
to have less negative d13C values.

The two galago species are signi®cantly di�erent from
each other in d13C values (Figure 1; 0:02 level of
probability, 16 df). G. zanzibaricus is 0.5& more
negative than G. garnettii. The smaller G. zanzibaricus
depends to a greater extent on insects than does the
larger G. garnettii but, as discussed above, this is not the
causal variable. The di�erence between the two galago
species is of the same order of magnitude and in the
same direction as that between leaves from the base (0±
5 m) and the mid-canopy portion in deciduous, tropical
forests (see Fig. 3; Broadmeadow et al. 1992). G. zanzi-
baricus spends approximately 70% of its time below 5 m
in the canopy whereas G. garnettii spends over 50% of
the time above 5 m (Harcourt and Nash 1986). The d13C
values in leaves from di�erent heights in individual
forests are comparable between similar forest habitats
(see Table 3) and result from isotope e�ects (Farquhar
et al. 1982). These e�ects are produced by various fac-

Fig. 1 d13C values plotted against d15N values in hair (mean � SD)
for two Galago species from Kenya, Lepilemur leucopus from
Madagascar and, for comparison, laboratory-reared Sus scrofa. The
ten sows were fed a monotonous diet and represent the minimal
interanimal variation expected. The o�set in d13C values between the
two Galago species correlates with their feeding position within the
canopy. The d13C values in the Lepilemur individuals correlates both
with the drought conditions in their habitat and with time spent
feeding on a CAM plant species. The d15N values among the species
correlate with trophic position in feeding and with time spent feeding
on leguminous plants among Lepilemur individuals

Fig. 2 Observational data of feeding for four individual L. leucopus
plotted against hair d13C values. There is a positive linear relation with
time spent feeding on Euphorbia tirucalli, a CAM tree species. One
result of the response to water stress in CAM species is that leaf d13C
values are less negative than normal (O'Leary 1988). The Lepilemur
study site in Madagascar had experienced severe drought for 2 years
prior to hair collection
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tors (Lajtha and Marshall 1994) including soil-respired
12C-enriched CO2 at the canopy base (Schleser and
Jayasekera 1985; Broadmeadow et al. 1992) and high
light levels at canopy tops (Yakir and Israeli 1995). The
average di�erence between galagos occurs even though
the two species do not completely restrict their move-
ments to one or the other position within the canopy.
Lepilemur, which occupies the upper level of the canopy
in a drought-a�icted forest, also ®ts the trend. A high
light level at the canopy top combines with the drought
e�ect in the latter genus.

Nitrogen

The two omnivorous galago species di�er from each
other by only 0.3& (insigni®cant statistically) although
G. zanzibaricus, which includes more insects in its diet
than does G. garnettii, shows the more positive value.
The two galago species are signi®cantly more positive in
hair d15N values than the herbivore, Lepilemur, on av-
erage (signi®cant at the 0.01 level, df � 25) as expected
based on the di�erence in trophic position. Yet, the
average di�erence between the two genera is only 1.6&
whereas the o�set between trophic levels (Minagawa and
Wada 1984; Schoeninger and DeNiro 1984) and between
animals and their diets (DeNiro and Epstein 1981; Hare
et al. 1991) is commonly 3&. Elevated animal d15N
values correlate with water conservation mechanisms in
some situations (Schoeninger and DeNiro 1984; Am-
brose and DeNiro 1986; Heaton et al. 1986; Sealy et al.
1987; Cormie and Schwarcz 1996) and it is possible that
the Lepilemur d15N values are elevated as a result of
water stress. Further controlled studies are needed in
this area.

Within the Lepilemur sample there is a negative cor-
relation between hair d15N values and the amount of
feeding time spent on T. indica (kily), a leguminous tree
(Fig. 4). Plant d15N values vary primarily with soil
nitrogen loss rates (Nadelho�er and Fry 1994) and N2

®xation by plant species with symbiotic bacteria
(Shearer and Kohl 1986; Bowman et al. 1996; Hogberg
et al. 1996). Legumes normally show d15N values that
are less positive than non-legumes (Fig. 5), with the size
of the o�set indicating the amount of N2 ®xation (Vir-
ginia and Delwiche 1982; Shearer et al. 1983; Shearer
and Kohl 1986). Among the four Lepilemur there is a
3& range of variation associated with a maximum dif-
ference of 20% in feeding time devoted to leguminous
plants. This range encompasses the total range of vari-
ation within our Lepilemur sample.

The range of variation within each prosimian species
is large compared with previously reported data on hair
d15N values in four New World monkey species. The
range of values in the two galago species (3.4& and
3.0&) and in Lepilemur (3.1&) is up to an order of
magnitude larger than in four Cebus (0.2&), ®ve Ateles
(0.6&), nine Alouatta (1.0&), and seven Brachyteles

Table 2 E�ects of water availability on C3 plant d13C values. Data
are from Garten and Taylor (1992), in which habitats labelled
`xeric' are those on hilltops and hillsides and `mesic' refers to valley
bottoms. The same plant species were represented in each habitat

Annual
rainfall

Habitat

(mm) Xeric Mesic
d13C (PDB) � SE (&) d13C (PDB) � SE (&)

500 )28.9 � 0.2 )29.8 � 0.2
800 )29.2 � 0.1 )30.0 � 0.2
1,000 )29.8 � 0.1 )30.2 � 0.2

Fig. 3 Average leaf and animal d13C values plotted against vertical
position within forest canopies. Leaf data are within level averages
reported for a deciduous tropical forest in Trinidad (Broadmeadow
et al. 1992). The prosimian species (this study) occupy di�erent levels
within their deciduous tropical forests in Kenya (Galago) and
Madagascar (Lepilemur). The primate species data show a similar
magnitude of di�erence in d13C values and the same direction of
di�erence as reported for leaf d13C values

Table 3 Leaf d13C (PDB) varies
by position in canopy and by
the amount of canopy cover in
C3 plants

Canopy
level

Trinidada Venezuelab (3,500 mm rain) Tennesseec Bavariad

Deciduous
tropical

Semi-
evergreen
tropical

Evergreen
tropical
podzol

Evergreen
tropical
laterite

Deciduous
temperate

Deciduous
temperate

Top )24.7& )28.4& )27.7& )27.9&
Mid )28.0& )28.8& )30.5& )30.4& )29.6& )28.8&
Base )28.6& )31.3& )35.2& )35.4& )31.5&

a Data from Broadmeadow et al. (1992)
b Data from van der Merwe and Medina (1989)
c Data from Garten and Taylor (1992)
d Data from Vogel (1978b)
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(1.1&) (Schoeninger et al. 1997) as well as in ®ve
domestic Sus fed monotonous diets (1.4&) (M.J. Sch-
oeninger, U.T Iwaniec and T. Crenshaw, unpublished
data). Lepilemur, the prosimian for which we have focal
feeding data, shows a range of variation of 14% to 36%
of time spent feeding on leguminous plants. Alouatta
was also reported feeding on leguminous plants
(Glander 1979), yet, the range of variation in hair d15N
values within Alouatta (Schoeninger et al. 1997) is one-
third that of Lepilemur. In contrast to Lepilemur, Alou-
atta forages in groups where individuals often use the
same routes for travel following each other in single ®le
(Milton 1980) and presumably eating similar items. Le-
pilemur and the galagos, for which we have no focal
feeding data, have solitary feeding habits and presum-
ably vary individually in diet items as reported for Le-
pilemur. We conclude that the large ranges in the three
prosimian species are probably due to variation in diet
items taken by di�erent individuals and that this
parameter is an indirect indicator of species foraging
strategy. As such, the species range in d15N values re-
¯ects feeding habits while the individual values indicate
diet.

Discussion

As expected, average d13C values of species were corre-
lated with the drought in Madagascar and with feeding
position in the forest canopy. Average d15N values

correlated with trophic position and time spent feeding
on leguminous plants. In addition, the solitary feeding
habits of the three species are re¯ected in the large range
of variation within each species when compared with
other species that feed as a group.

Of signi®cance is the apparent generality of these
®ndings. We contend that general trends and processes
are re¯ected in the d13C and d15N values of arboreal
primate tissues. Average d13C values in Galago hair are
very similar to those in two species of New World
monkeys living in dry, deciduous forests of Costa Rica
and Brazil (Table 4). L. leucopus from a drought-
a�icted CAM/C3 forest has less negative d13C values
and two species of New World monkeys from a wetter,
closed-canopy C3 forest in Costa Rica have more neg-
ative d13C values.

The d15N values from the species are also compara-
ble. Two disparate genera, Galago and Cebus (Table 5),
the former a prosimian from Kenya and the latter an
anthropoid from Costa Rica, are both insectivore-
frugivores and have identical average d15N values. There
is also congruence in two folivorous species, L. leucopus

Fig. 4 Observational data of feeding plotted against hair d15N values
for four individual L. leucopus (this study) and the average for nine
Alouatta palliata (Schoeninger et al. 1997). Within Lepilemur, the
stable isotope data show an inverse correlation with time spent feeding
on Tamarindus indica which is a leguminous tree species. Within
Alouatta, the population is reported to spend more than 40% of its
feeding time on leguminous plants (Glander 1979). Legumes can ®x
atmospheric N2, in which case their tissues have d15N values lower
than those in other plants, on average Fig. 5 Average plant d15N values reported for N2-®xing species and

for non-®xing species (data redrawn from Virginia and Delwiche
1982; Shearer et al. 1983; Shearer and Kohl 1986). The number of
species from each collection site is shown above each column. Within
each site, the average value for ®xing species is always lower than that
for non-®xing species although there is variation between sites. For the
most part, the d15N values of non-®xing species fall between 6& and
7& and those of N2-®xing species are less than 4&. The variation is
due to di�erences in source nitrogen (biomass degradation, source
rock, or rain in non-®xing species, and N2 ®xation in the others) and
nitrogen loss mechanisms in soil (biomass burning, water removal,
plant uptake)
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and A. palliata when plant species data are taken into
account (see Fig. 4). Both species are committed folivores
based on tooth morphologies (Kay 1975) and gut mor-
phologies (Chivers and Hladik 1980) but Lepilemur has
average d15N values almost 2& more positive than the
average for Alouatta. The population of Alouatta spends
over 40% of its feeding time on leguminous plants
(Glander 1981), whereas the extreme inLepilemur is 36%.
The possibility that some Lepilemur d15N values are ele-
vated in response to water stress requires further study.

In combination, these data strongly support the
conclusion that hair d13C and d15N values of forest-
dwelling primates accurately re¯ect general aspects of
species habitat utilization and nutritional ecology. As
such, the data suggest that the analysis of hair (or other
proteinaceous tissues) from museum specimens of forest-
dwelling primates can be used in reconstructing general
aspects of forest paleoecology, species diet, and species
feeding patterns (solitary vs. group feeding) in extinct
populations and species. Further analyses of animal
tissues from well-studied ecosystems in which diet items
are also analyzed can only hasten the full realization of

the enormous potential in this approach to primate
ecology, speci®cally, and to animal ecology, in general.
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